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1. Introduction

This work is motivated by a problem in energy markets,
where an energy producer needs to decide on the optimal quan-
tity and price of energy to bid into a market with auction-based
clearing. When the amount of energy finally produced differs
from the accepted bid quantity, any excess/shortfall of energy
needs to be sold/bought at an imbalance settlement price. De-
noting θ the bid price, η the bid quantity, x1 the clearing price,
x2 the imbalance settlement price and q the final energy pro-
duced, the revenue of the producer is ηx1 + (q − η)x2 if the bid
is accepted (θ ≤ x1) and qx2 otherwise.

In this work, we will study a generalized version of the above
problem. Fix two vectors u, v ∈ Rd and for θ ∈ R, η ∈ [0, 1]
define the value of a bid as

Vθ,η(x, q) =

q(u · x), x1 < θ,

η(v · x) + (q − η)(u · x), x1 ≥ θ.

= η((v − u) · x)1{x1 ≥ θ} + qu · x

Note that the energy market problem above corresponds to u =
(0, 1), v = (1, 0) where the bid is accepted if the bid price θ is
below or at the clearing price x1, x1 ≥ θ.

The setting in this work is probabilistic, with integrable ran-
dom variables X and Q, not necessarily independent. We will
consider the problem of maximizing the value of a bid over θ
and η for the expected value, for arbitrary convex risk measures
and in the distributionally robust setting.

The main contributions are

• We show that we can always choose η = 1 in the optimal
bid when the value of a bid is measured by an arbitrary
convex risk measure.

• We provide a necessary condition satisfied by the optimal
value θ when X has a probability density and the risk mea-
sure is expectation.

• We give an explicit expression for the optimal value θ∗

when X is Gaussian and the risk measure is expectation.

• We completely solve the distributionally robust optimiza-
tion problem for a discontinuous cost function that is
piecewise linear on two domains in Rd separated by a hy-
perplane.

Most similar to the present work is the work on two-price
imbalance settlement in power systems where any deviation be-
tween bid quantity and produced quantity is penalized, leading

to a newsvendor problem [3]. In two-price imbalance settle-
ment, the key variable to optimize is quantity and the bid price
is usually not even included in the set of optimization variables.
This contrasts with the situation in single-price imbalance set-
tlement as studied in this work, where bid price is the key op-
timization variable and quantity is trivial. This is particularly
relevant due to the ongoing transition of energy markets from
dual-price to single-price schemes in a number of jurisdictions,
including the Nordic countries.

Existing work on Wasserstein distributionally robust opti-
mizations focuses on deriving tractable formulations of the dual
for continuous cost functions[2]. To the author’s knowledge,
the present work is the first work studying a class of cost func-
tions that are neither upper- nor lower-semicontinuous.

2. Optimal bid quantities

For the expected value, we note that we have the following
expression for the expectation of the bid value:

E[Vθ,η(X,Q)] = ηE[(v − u) · X; X1 ≥ θ] + E[Q(u · X)].

From this it is clear that the bid value is affine in η and so at-
tains its maximum either at η = 0 or η = 1. As the following
theorem shows, this observation generalizes to arbitrary convex
risk measures, a very general class which contains for example
expectation, VaR or CVaR.

Theorem 1. For any convex risk measure R, any maximum
(η∗, θ∗) of

R
(
Vθ,η(X,Q)

)
will have either η∗ = 0 or η∗ = 1.

Proof. To simplify notation, define two random variables

Aθ = ((v − u) · X)1{X1 ≥ θ},

B = Q(u · X)

so that
Vθ,η(X,Q) = ηAθ + B.

Since R is a convex risk measure, there is an acceptance set
Q of measures such that

R(ηAθ + B) = sup
Q∈Q

EQ[ηAθ + B]
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so that by Sion’s minimax theorem

max
θ,η
R(ηAθ + B) = max

θ
max
η∈[0,1]

sup
Q∈Q
{ηEQ[Aθ] + EQ[B]}

= max
θ

sup
Q∈Q

max
η∈[0,1]

{ηEQ[Aθ] + EQ[B]}.

Since the expression being maximized over η is affine, it attains
its maximum at the boundaries of the domain and the conclu-
sion follows.

Since Vθ0,η=0 = limθ→∞ Vθ,1 almost surely for any value of θ0,
we restrict ourselves to the case η = 1 for the rest of the paper
and use the notation Vθ = Vθ,1.

3. Optimal bid prices

In this section, we derive a necessary condition for a bid price
θ to be an optimum (minimum or maximum) of the expected
revenue.

Theorem 2. If X has a probability density, then any local opti-
mum θ∗ of EVθ satisfies

E
[
u · X|X1 = θ

∗] = E
[
v · X|X1 = θ

∗] .
Proof. Recall that E[Vθ] = E[(u− v) · X; θ ≤ X1]+E[v · X] and
denote p(x1, ..., xd) the density of X. Then we can differentiate
EVθ as follows:

∂θEVθ = ∂θE[(u − v) · X; θ ≤ X1]

= ∂θ

∞∫
x1=θ

∞∫
x2,...,xd=−∞

(u1 − v1)x1

+

d∑
i=2

(ui − vi)xi p(x1, . . . , xd) dx1 . . . dxd

= −

∫ ∞

x2,...,xd=−∞

(u1 − v1)θ

+

d∑
i=2

(ui − vi)xi p(θ, . . . , xd) dx2 . . . dxd.

Setting the derivative to zero and rearranging, we get that any
local optimum θ∗ satisfies

−(u1 − v1)θ∗

=

∫ ∞
x2,...,xd=−∞

∑d
i=2(ui − vi)xi p(θ, . . . , xd) dx2 . . . dxd∫ ∞

x2,...,xd=−∞
p(θ, . . . , xd) dx2 . . . dxd

= E

 d∑
i=2

(ui − vi)Xi

∣∣∣∣∣∣∣X1 = θ
∗


or equivalently by the properties of conditional expectation

E
[
(u − v) · X|X1 = θ

∗] = 0
⇐⇒ E

[
u · X|X1 = θ

∗] = E
[
v · X|X1 = θ

∗] .

4. Examples

4.1. Many local maxima
The purpose of this section is to give an example that shows

that EVθ can have an arbitrary number of local maxima and
minima and that provides some insight into the single-price im-
balance settlement problem.

Let Q = 1 be deterministic and fix u = (0, 1), v = (1, 0) so
that

EVθ(X) = E[X2; X1 < θ] + E[X1; X1 ≥ θ].

Suppose that X is distributed according to the empirical proba-
bility measure µ of the set of points x(i), i = 1, . . . ,N in R2, i.e.
µ = N−1 ∑N

i=1 δxi where we set

x(i) =

(i, 0), i even,
(i,N), i odd.

With this choice of measure, we have that

E[X2; X1 < θ] = N−1
∑

i=1,...,2k−1;i odd

N = k for θ ∈ (2k − 1, 2k + 1]

and

E[X1; X1 ≥ θ] = N−1
N∑

i=k

i for θ ∈ (k − 1, k]

showing that EVθ is left-continuous with right limits and piece-
wise constant on intervals (k − 1, k], k = 1, . . . ,N. It is thus
sufficient to study integer values of θ. We will show that EVθ
has local minima at all odd values of θ and local maxima at all
even values. From the preceding we have that

E[X2; X1 < 2k + 1] = E[X2; X1 < 2k] = k

and
E[X1; X1 ≥ k + 1] − E[X1; X1 ≥ k] = −k/N

from which it immediately follows that

EV2k+1 − EV2k = −2k/N < 0
EV2k − EV2k−1 = 1 − (2k − 1)/N > 0

which is what we wanted to show since EVθ is piecewise con-
stant. Also note that EV2(k+1) − EV2k = 1 − (4k + 1)/N so that
for N = 4K + 1, K ∈ N, EVθ admits a global maximum at
θ = 2K since we already know that all maxima are located at
even values of θ.

4.2. Unique local maximum in a Gaussian example
In this section, we study an example with a unique optimal

value θ∗ that can be explicitly computed. Fix u = (0, 1) and
v = (1, 0) and suppose that X1 and X2 are jointly Gaussian with
means µ1, µ2, variances σ2

1, σ
2
2 and correlation coefficient ρ.

We have the following representation in terms of independent
standard normal random variables Z1,Z2:

X1 = σ1Z1 + µ1,

X2 = σ2ρZ1 + σ2

√
(1 − ρ2)Z2 + µ2.
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First, note that we have

E[X1 − X2; X1 ≥ θ]

= E
[
X1 − X2; Z1 ≥

θ − µ1

σ1

]
= (µ1 − µ2)P

(
Z1 ≥

θ − µ1

σ1

)
+ (σ1 − σ2ρ)E

[
Z1; Z1 ≥

θ − µ1

σ1

]
= (µ1 − µ2) (1 − F (g(θ))) + (σ1 − σ2ρ) f (g(θ))

with g(θ) = θ−µ1
σ1

and F, f the Gaussian cumulative and proba-
bility density functions respectively. Differentiating yields

∂θE[X1 − X2; X1 ≥ θ]
= (−(µ1 − µ2) − (σ1 − σ2ρ)g(θ))g′(θ) f (θ)

and evaluating the derivative at 0 shows that E[X1 −X2; X1 ≥ θ]
is increasing only if σ1 − σ2ρ > 0.

If EVθ has a maximum, we can use the necessary condition
for an optimal θ∗ from the previous section to find

E[X2|X1 = θ
∗] = θ∗

⇐⇒
σ2

σ1
ρ(θ∗ − µ1) + µ2 = θ

∗

⇐⇒ θ∗ =
µ2 −

σ2
σ1
ρµ1

1 − σ2
σ1
ρ
.

5. Distributionally Robust Solutions

We now consider the distributionally robust version of the
problem. In this section, we make the simplifying assump-
tion that Q is fixed so that we can assimilate it into u and v.
We assume that we are given an estimate of a joint distribution
of X1, X2, represented by a measure µ, and we seek a solution
to the following distributionally robust optimization problem,
given a radius r of a Wasserstein ball around µ:

sup
θ

inf
ν:W1(ν,µ)≤r

Eν[Vθ(X1, X2)]. (1)

Our main computational tool will be the strong duality for-
mula for distributionally robust optimization from [1], Propo-
sition 2 and Theorem 1: For any Borel measure µ on a Polish
space (E, d) and function Ψ ∈ L1(µ) it holds that

sup
ν:Wd(ν,µ)≤r

EνΨ(X) = min
λ≥0

{
λr − EµΦ(λ, X)

}
with

Φ(λ, x) = inf
y∈E

[λd(x, y) − Ψ(y)].

Applied to our setting, after some sign manipulations to ac-
count for the infimum instead of the supremum, the duality
reads

inf
ν:W1(ν,µ)≤r

Eν[Vθ(X1, X2)] = max
λ≥0

{
EµΦθ(λ, X) − λr

}
(2)

with
Φθ(λ, x) = inf

y∈Rd
[λ|x − y| + Vθ(y)].

We show below in Theorem 3 that λ 7→ E[Φθ(λ, X)] is
concave and give an explicit expression for its supergradient
∂λE[Φθ(λ, X)] in Theorem 4. The maximum on the right-hand
side of problem (2) is therefore attained for all λ∗θ(r) such that

r ∈ ∂λE
[
Φθ(λ∗θ(r), X)

]
(3)

and we have

inf
ν:W1(ν,µ)≤r

Eν [Vθ(X1, X2)] = E
[
Φθ(λ∗θ(r), X)

]
− λ∗θ(r)r.

Using the explicit expression of the supergradient, it is
straightforward to compute λ∗θ(r) for a given θ either by solv-
ing the concave problem on the right-hand side of (2) using nu-
merical methods for convex optimization such as (stochastic)
subgradient descent or by solving (3) using root-finding meth-
ods.

We thus have an efficient way to evaluate the inner infimum
in the original problem (1). Since θ 7→ EVθ(X) can in general be
arbitrary and its properties depend strongly on the distribution
µ, the outer optimization needs to be tailored to specific use
cases. Without making assumptions on µ, a simple line search
over θ is often feasible in practice.

Lemma 1. For any u ∈ Rd, ξ ∈ R, λ > 0 we have

inf
x∈Rd :x1=ξ

{λ∥x∥ + u · x} =


√
λ2 −

∑
i,1 u2

i |ξ| + u1ξ

if λ2 ≥
∑

i,1 u2
i ,

−∞ otherwise.

When finite, the infimum is attained at a point x∗ with

x∗1 = ξ, x∗i,1 =
−ui|ξ|√
λ2 −

∑
i,1 u2

i

.

Proof. First assume that λ2 ≥
∑

i,1 u2
i and let f (x) = λ∥x∥+u ·x.

For ξ = 0, note that by Cauchy-Schwarz we have for any x such

that x1 = 0 that f (x) ≥ (λ −
√∑

i,1 u2
i )|x| ≥ 0 and the lower

bound is attained at 0, consistent with our formula for x∗. For
ξ , 0, |x| > 0 and f is convex and continuously differentiable
with partial derivatives ∂i,1 f (x) = λ xi

|x| + ui. By substitution, we
can verify that ∂i,1 f (x∗i ) = 0 so that the minimum is attained
at x∗ with value f (x∗) as given in the statement. Next, define
û ∈ Rd such that û1 = 0, ûi,1 = ui. When λ2 <

∑
i,1 u2

i = |û|
2,

we have at any x by Cauchy-Schwarz that −û · ∇ f (x) ≤ (λ −
|û|)|û| < 0 which shows that the lower bound is −∞.

Lemma 2. For λ ≥ 0, k, a ∈ R we have

inf
x≤a
{λ|x| + kx} =


−∞ if λ < k,
(k − λ)a if λ ≥ k, a ≤ 0,
min{0, (k + λ)a} if λ ≥ k, a ≥ 0.

The same result holds with strict inequality with the infimum
over {x < a}.
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Proof. Let f (x) = λ|x| + kx. For a ≤ 0, on (−∞, a] we have
f (x) = (k − λ)x which is linear and thus is either unbounded
below or attains its minimum at a, depending on the sign of
k−λ. For a ≥ 0, f is continuous and piecewise linear on (−∞, 0]
and [0, a], so that when k − λ ≤ 0 the minimum is attained in
{0, a} with value min{ f (0), f (a)} = min{0, (k + λ)a}. The result
for strict inequality follows from the definition of the infimum
as the greatest lower bound and continuity of the minimum in
a.

Let
Φθ(λ, x) = inf

y∈Rd
{λ|y − x| + Vθ(y)} (4)

and for w ∈ Rd define g(λ,w) =
√
λ2 −

∑
i,1 w2

i .

Theorem 3. For λ ≥ 0, x ∈ Rd we have Φθ(λ, x) > −∞ if and
only if g(λ, u) − u1 ≥ 0 and g(λ, v) + v1 ≥ 0. In that case, for
each x fixed, λ 7→ Φθ(λ, x) is concave, increasing, continuous
and piecewise differentiable. For each λ fixed, x 7→ Φθ(λ, x) is
continuous and piecewise affine. Furthermore, Φθ admits the
following explicit representation:

Φθ(λ, x) =

min
(
Φ1
θ(λ, x),Φ3

θ(λ, x)
)
, x1 ≤ θ,

min
(
Φ2
θ(λ, x),Φ4

θ(λ, x)
)
, x1 ≥ θ

=


Φ1
θ(λ, x), x ∈ Γ̄1

θ(λ),
Φ2
θ(λ, x), x ∈ Γ̄2

θ(λ),
Φ3
θ(λ, x), x ∈ Γ̄3

θ(λ),
Φ4
θ(λ, x), x ∈ Γ̄4

θ(λ).

with

Φ1
θ(λ, x) = (g(λ, v) + v1)(θ − x1) + v · x,

Φ2
θ(λ, x) = (g(λ, u) − u1)(x1 − θ) + u · x,

Φ3
θ(λ, x) = min(0, g(λ, u) + u1)(θ − x1) + u · x,

Φ4
θ(λ, x) = min(0, g(λ, v) − v1)(x1 − θ) + v · x.

The spaces Γi
θ(λ), i = 1, 2, 3, 4, are affine convex cones arising

from the intersection of two halfspaces

Γ1
θ = {x : x1 < θ,Φ

1
θ < Φ

3
θ}

= {x : x1 < θ, (v − u + b1(λ)e1) · x < b1(λ)θ}

Γ2
θ = {x : x1 > θ,Φ

2
θ < Φ

4
θ}

= {x : x1 > θ, (u − v + b2(λ)e1) · x < b2(λ)θ}

Γ3
θ = {x : x1 < θ,Φ

1
θ > Φ

3
θ}

= {x : x1 < θ, (v − u + b1(λ)e1) · x > b1(λ)θ}

Γ4
θ = {x : x1 < θ,Φ

2
θ > Φ

4
θ}

= {x : x1 > θ, (u − v + b2(λ)e1) · x > b2(λ)θ}

with

b1(λ) = min(0, g(λ, u) + u1) − (g(λ, v) + v1)
b2(λ) = min(0, g(λ, v) − v1) − (g(λ, u) − u1).

Proof. On {y : y1 ≤ θ} = {y : y1 − x1 ≤ θ − x1} we have by
definition of Vθ and the successive application of Lemma 1 and
Lemma 2

inf
y:y1<θ
{λ|y − x| + Vθ(y)}

= inf
ξ<θ−x1

inf
y1−x1=ξ

{λ|y − x| + u · (y − x)} + u · x

= inf
ξ<θ−x1

{g(λ, u)|ξ| + u1ξ} + u · x

=

(g(λ, u) − u1)(x1 − θ) + u · x if θ ≤ x1,

min{0, g(λ, u) + u1}(θ − x1) + u · x if θ ≥ x1.

Similarly, we have on {y : y1 ≥ θ} = {y : x1 − y1 ≤ x1 − θ}

inf
y:y1≥θ
{λ|y − x| + Vθ(y)}

= inf
ξ≤x1−θ

inf
x1−y1=ξ

{λ|x − y| − v · (x − y)} + v · x

= inf
ξ≤x1−θ

{g(λ, v)|ξ| − v1ξ} + v · x

=

(g(λ, v) + v1)(θ − x1) + v · x if θ ≥ x1,

min{0, g(λ, v) − v1}(x1 − θ) + v · x if θ ≤ x1.

The expressions for Φθ now follow by collecting the cases for
x1 ≤ θ and x1 ≥ θ. Since g is concave in λ, so is each of Φi

θ

in their corresponding halfspace, so that Φθ is a minimum of
concave functions and therefore concave. The necessary and
sufficient conditions for Φθ > −∞ follow from the correspond-
ing conditions in Lemma 1 and Lemma 2. The expressions for
Γi
θ in terms of halfspaces follow immediately from the defini-

tions by rearranging terms.

Theorem 4. The supergradient of the concave function λ 7→
E[Φθ(λ, X)] can be written

∂λE[Φθ(λ, X)] =
{
λ

g(λ, v)
E

[
θ − X1;Γ1

θ(λ)
]

+
λ

g(λ, u)
E

[
X1 − θ;Γ2

θ(λ)
]

+
λ

g(λ, u)
E

[
θ − X1;Γ3

θ(λ); λ < |u|
]

+
λ

g(λ, v)
E

[
X1 − θ;Γ4

θ(λ); λ < |v|
]

+ β; β ∈ Iθ(λ)
}

where the interval Iθ is the convex hull of the supergradients at
the boundaries of the open sets Γi

θ and at the points of disconti-
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nuity λ = |u| and λ = |v|:

Iθ(λ) =
[
λmin

(
1

g(λ, u)
,

1
g(λ, v)

)
E

[
θ − X1; Γ̄1

θ ∩ Γ̄
3
θ ; λ < |u|

]
+ λmin

(
1

g(λ, u)
,

1
g(λ, v)

)
E

[
X1 − θ; Γ̄2

θ ∩ Γ̄
4
θ ; λ < |v|

]
,

λmax
(

1
g(λ, u)

,
1

g(λ, v)

)
E

[
θ − X1; Γ̄1

θ ∩ Γ̄
3
θ

]
+ λmax

(
1

g(λ, u)
,

1
g(λ, v)

)
E

[
X1 − θ; Γ̄2

θ ∩ Γ̄
4
θ

]
+

λ

g(λ, u)
E

[
θ − X1;Γ3

θ ; λ = |u|
]

+
λ

g(λ, v)
E

[
X1 − θ;Γ4

θ ; λ = |v|
]]
.

Proof. By linearity, the supergradient commutes with expecta-
tion. Since ∂λg(λ,w) = λ/g(λ,w), w ∈ Rd we have immediately
that

∂λΦ
1
θ =

{
λ

g(λ, v)
(θ − x1)

}
∂λΦ

2
θ =

{
λ

g(λ, u)
(x1 − θ)

}
yielding the supergradient of Vθ on Γ1

θ and Γ2
θ . Since Φ3

θ and Φ4
θ

are not differentiable at λ = |u| and λ = |v| respectively, we now
discuss the supergradients of all terms involvingΦ3

θ for different
values of λ. The reasoning for Φ4

θ is completely analogous and
therefore omitted.

• λ < |u|:

∂λΦ
3
θ =

{
λ

g(λ, u)
(θ − x1)

}
,

Co(∂λΦ3
θ ∪ ∂λΦ

1
θ)

=
[
min(∂λΦ3

θ ∪ ∂λΦ
1
θ),max(∂λΦ3

θ ∪ ∂λΦ
1
θ)
]

= λ(θ − x1)
[
min

(
1

g(λ, u)
,

1
g(λ, v)

)
,max

(
1

g(λ, u)
,

1
g(λ, v)

)]
.

• λ = |u|:

∂λΦ
3
θ =

[
0,

λ

g(λ, u)
(θ − x1)

]
,

Co(∂λΦ3
θ ∪ ∂λΦ

1
θ)

=
[
min(∂λΦ3

θ ∪ ∂λΦ
1
θ),max(∂λΦ3

θ ∪ ∂λΦ
1
θ)
]

= λ(θ − x1)
[
0,max

(
1

g(λ, u)
,

1
g(λ, v)

)]
.

• λ > |u|:
∂λΦ

3
θ = 0,

Co(∂λΦ3
θ ∪ ∂λΦ

1
θ)

=
[
min(∂λΦ3

θ ∪ ∂λΦ
1
θ),max(∂λΦ3

θ ∪ ∂λΦ
1
θ)
]

= λ(θ − x1)
[
0,max

(
1

g(λ, u)
,

1
g(λ, v)

)]
.

The result now follows by writing the left endpoint of
Co(∂λΦ3

θ ∪ ∂λΦ
1
θ) as

λ(θ − x1)1{λ < |u|}min
(

1
g(λ, u)

,
1

g(λ, v)

)
and assimilating the indicator function into the expectation. The
term in ∂λΦ3

θ is only a non-singleton for λ = |u|, so we again as-
similate the indicator function into the expectation and include
this case into Iθ.

Corollary 1.

∂λE[Φθ(λ, X)] ∋
λ

g(λ, v)
E

[
θ − X1; Γ̄1

θ(λ)
]

+
λ

g(λ, u)
E

[
X1 − θ; Γ̄2

θ(λ)
]

+
λ

g(λ, u)
E

[
θ − X1;Γ3

θ(λ); λ < |u|
]

+
λ

g(λ, v)
E

[
X1 − θ;Γ4

θ(λ); λ < |v|
]
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